Applying Sustainable Development Goals to the Conservation of Winter Environments and Cold-adapted Species in a Warming World

Benjamin Zuckerberg¹, David Gudex-Cross¹, Spencer R. Keyser¹, Daniel Fink², Jonathan N. Pauli¹, Madeline Rubenstein³, Volker C. Radeloff¹

University of Wisconsin – Madison¹

Cornell Lab of Ornithology²

National Climate Adaptation Science Center³

Project: 18-SLSCVC18-0001

Investigators: B. Zuckerberg, V. C. Radeloff, J. N. Pauli, M. Rubenstein, D. Fink

Winter: More than meets the eye

Snow == Habitat

Extent
Duration
Variability
Subnivium

Physiology Abundance Interactions Distribution

Snow in a warming world

Addressing UN Sustainable **Development Goals**

SDG 15 - 'Life on Land'

Proportion of important sites for terrestrial biodiversity that are covered by protected areas (15.1.2)

Mapping winter biodiversity

Assessing protect areas coverage for important winter biodiversity

3 GOOD HEALTH AND WELL-BEING

4 QUALITY EDUCATION

Project Objectives

Develop ecologically-relevant metrics to capture snow cover dynamics at regional and global scales using existing remotely sensed data

Integrate snow cover dynamics with large-scale, citizen science data to improve distribution modelling for winter vertebrate communities

Map winter biodiversity "hotspots" across multiple extents to assess and improve the conservation of winter biodiversity

Winter Habitat Indices

Snow – optical multispectral sensors

Satellite/Sensor	Spatial Resolution	Imaging Frequency	Data Record
MODIS*	500m	Daily	2000-On
Landsat (all sensors)	30m	16 days	1985-On
Landsat 8	30m	16 days	2013-On
Sentinel 2	10-30m	5 days	2017-On
Harmonized L8-S2	30m	2-3 days	2017-On

^{*}Data from both MODIS sensors (Aqua & Terra) begin in 2002

Frozen ground – microwave sensors

Data Product	Spatial	Image	Data
	Resolution	Frequency	Record
MEaSUREs Freeze/Thaw	6-25km**	Daily	1979-2018*

^{**6} km data only available for the Northern Hemi from 2002-2018

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Winter Habitat Indices (WHIs) for the contiguous US and their relationship with winter bird diversity

David Gudex-Cross ^{a,*}, Spencer R. Keyser ^b, Benjamin Zuckerberg ^b, Daniel Fink ^c, Likai Zhu ^d, Jonathan N. Pauli ^e, Volker C. Radeloff ^a

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products

Likai Zhu ^{a,*}, Volker C. Radeloff ^a, Anthony R. Ives ^b

Winter Length

Snow season length = # days between first & last snow

Snow Cover Variability

Example Time-Series:

											SCV = 40%
Abs(Change)		0	1	0	0	1	0	1	0	1	= 4 change events
State	0	0	1	1	1	0	0	1	1	0	= 10 total obs
	no snow	no snow	snow	snow	snow	no snow	no snow	snow	snow	no snow	

Subnivium Conditions

Freq. of frozen ground without snow = # of frozen ground w/o snow days ÷ total # frozen days

Winter Vertebrate Data Sources

Data Source	Occurrence/ Abundance	•		Taxa Included
eBird		Global/3 km neighborhoods	2003-2020/Weekly	Ę,
Furbearer Harvest Database		U.S. Wide/Varying Spatial Units	1900-2020/Annual	73/
IUCN Range Maps		Global/~110 km	NA	

2004 – 2020 26M Checklists 6.5M Locations

Range
Occurrence
Abundance
Habitat

Snow cover as a biogeographic constraint

Winter Bird Species Richness

Snow-associated Species

Winter Bird Species Richness

Snow-associated Species

Winter Vertebrate Data Sources

Data Source	Occurrence/ Abundance	Spatial Extent/Resolution	Temporal Extent/Resolution	Taxa Included
eBird		Global/3 km neighborhoods	2003-2020/Weekly	Į,
Furbearer Harvest Database		U.S. Wide/Varying Spatial Units	1900-2020/Annual	73
IUCN Range Maps	✓ ⊗	Global/~110 km	NA	

Global Winter Habitat Indices

Winter climate is a strong determinant of extratropical diversity gradients

Conserving Winter Habitat

Future Steps

Mammals are next

Protected area analysis

Winter biodiversity conservation

silvis.forest.wisc.edu/maps-data/

HOME

PEOPLE Y

RESEARCH ~

PUBLICATIONS

MAPS & DATA Y

ABOUT US V

SIGN IN

GLOBAL SUBNIVIUM DATA

Snow Cover & Snow Free Duration Start/End/Length of Frozen Season

Global Subnivium Data »

WINTER HABITAT INDICES (WHIS)

WHIs based on Snow Cover Variability, Snow Season Length, and Frozen Ground without Snow duration.

WHIs Data & Maps »